288 research outputs found

    Functional Magnetic Resonance Imaging for Imaging Neural Activity in the Human Brain: The Annual Progress

    Get PDF
    Functional magnetic resonance imaging (fMRI) is recently developed and applied to measure the hemodynamic response related to neural activity. The fMRI can not only noninvasively record brain signals without risks of ionising radiation inherent in other scanning methods, such as CT or PET scans, but also record signal from all regions of the brain, unlike EEG/MEG which are biased towards the cortical surface. This paper introduces the fundamental principles and summarizes the research progress of the last year for imaging neural activity in the human brain. Aims of functional analysis of neural activity from fMRI include biological findings, functional connectivity, vision and hearing research, emotional research, neurosurgical planning, pain management, and many others. Besides formulations and basic processing methods, models and strategies of processing technology are introduced, including general linear model, nonlinear model, generative model, spatial pattern analysis, statistical analysis, correlation analysis, and multimodal combination. This paper provides readers the most recent representative contributions in the area

    Geometric Distribution Weight Information Modeled Using Radial Basis Function with Fractional Order for Linear Discriminant Analysis Method

    Get PDF
    Fisher linear discriminant analysis (FLDA) is a classic linear feature extraction and dimensionality reduction approach for face recognition. It is known that geometric distribution weight information of image data plays an important role in machine learning approaches. However, FLDA does not employ the geometric distribution weight information of facial images in the training stage. Hence, its recognition accuracy will be affected. In order to enhance the classification power of FLDA method, this paper utilizes radial basis function (RBF) with fractional order to model the geometric distribution weight information of the training samples and proposes a novel geometric distribution weight information based Fisher discriminant criterion. Subsequently, a geometric distribution weight information based LDA (GLDA) algorithm is developed and successfully applied to face recognition. Two publicly available face databases, namely, ORL and FERET databases, are selected for evaluation. Compared with some LDA-based algorithms, experimental results exhibit that our GLDA approach gives superior performance

    Logistic Regression Based on Statistical Learning Model with Linearized Kernel for Classification

    Get PDF
    In this paper, we propose a logistic regression classification method based on the integration of a statistical learning model with linearized kernel pre-processing. The single Gaussian kernel and fusion of Gaussian and cosine kernels are adopted for linearized kernel pre-processing respectively. The adopted statistical learning models are the generalized linear model and the generalized additive model. Using a generalized linear model, the elastic net regularization is adopted to explore the grouping effect of the linearized kernel feature space. Using a generalized additive model, an overlap group-lasso penalty is used to fit the sparse generalized additive functions within the linearized kernel feature space. Experiment results on the Extended Yale-B face database and AR face database demonstrate the effectiveness of the proposed method. The improved solution is also efficiently obtained using our method on the classification of spectra data

    Inductions and restrictions for stable equivalences of Morita type

    Get PDF
    AbstractIn this paper, we present two methods, induction and restriction procedures, to construct new stable equivalences of Morita type. Suppose that a stable equivalence of Morita type between two algebras A and B is defined by a B-A-bimodule N. Then, for any finite admissible set Φ and any generator X of the category of A-modules, the Φ-Auslander–Yoneda algebras of X and N⊗AX are stably equivalent of Morita type. Moreover, under certain conditions, we transfer stable equivalences of Morita type between A and B to ones between eAe and fBf, where e and f are idempotent elements in A and B, respectively. Consequently, for self-injective algebras A and B over a field without semisimple direct summands, and for any A-module X and B-module Y, if the Φ-Auslander–Yoneda algebras of A⊕X and B⊕Y are stably equivalent of Morita type for one finite admissible set Φ, then so are the Ψ-Auslander–Yoneda algebras of A⊕X and B⊕Y for every finite admissible set Ψ. Moreover, two representation-finite algebras over a field without semisimple direct summands are stably equivalent of Morita type if and only if so are their Auslander algebras. As another consequence, we construct an infinite family of algebras of the same dimension and the same dominant dimension such that they are pairwise derived-equivalent, but not stably equivalent of Morita type. This answers a question by Thorsten Holm

    Multimodal Spatial Calibration for Accurately Registering EEG Sensor Positions

    Get PDF
    This paper proposes a fast and accurate calibration method to calibrate multiple multimodal sensors using a novel photogrammetry system for fast localization of EEG sensors. The EEG sensors are placed on human head and multimodal sensors are installed around the head to simultaneously obtain all EEG sensor positions. A multiple views’ calibration process is implemented to obtain the transformations of multiple views. We first develop an efficient local repair algorithm to improve the depth map, and then a special calibration body is designed. Based on them, accurate and robust calibration results can be achieved. We evaluate the proposed method by corners of a chessboard calibration plate. Experimental results demonstrate that the proposed method can achieve good performance, which can be further applied to EEG source localization applications on human brain

    Modeling of Biological Intelligence for SCM System Optimization

    Get PDF
    This article summarizes some methods from biological intelligence for modeling and optimization of supply chain management (SCM) systems, including genetic algorithms, evolutionary programming, differential evolution, swarm intelligence, artificial immune, and other biological intelligence related methods. An SCM system is adaptive, dynamic, open self-organizing, which is maintained by flows of information, materials, goods, funds, and energy. Traditional methods for modeling and optimizing complex SCM systems require huge amounts of computing resources, and biological intelligence-based solutions can often provide valuable alternatives for efficiently solving problems. The paper summarizes the recent related methods for the design and optimization of SCM systems, which covers the most widely used genetic algorithms and other evolutionary algorithms

    Recent Advances in Morphological Cell Image Analysis

    Get PDF
    This paper summarizes the recent advances in image processing methods for morphological cell analysis. The topic of morphological analysis has received much attention with the increasing demands in both bioinformatics and biomedical applications. Among many factors that affect the diagnosis of a disease, morphological cell analysis and statistics have made great contributions to results and effects for a doctor. Morphological cell analysis finds the cellar shape, cellar regularity, classification, statistics, diagnosis, and so forth. In the last 20 years, about 1000 publications have reported the use of morphological cell analysis in biomedical research. Relevant solutions encompass a rather wide application area, such as cell clumps segmentation, morphological characteristics extraction, 3D reconstruction, abnormal cells identification, and statistical analysis. These reports are summarized in this paper to enable easy referral to suitable methods for practical solutions. Representative contributions and future research trends are also addressed
    corecore